Model theory applied to generalized polygons and conversely

نویسنده

  • Katrin Tent
چکیده

We describe the natural connection between model theory and generalized polygons and give some applications of one theory to the other.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fractional Order Generalized Thermoelastic Functionally Graded Solid with Variable Material Properties

In this work, a new mathematical model of thermoelasticity theory has been considered in the context of a new consideration of heat conduction with fractional order theory. A functionally graded isotropic unbounded medium is considered subjected to a periodically varying heat source in the context of space-time non-local generalization of three-phase-lag thermoelastic model and Green-Naghdi mod...

متن کامل

On Plane Waves for Mode-I Crack Problem in Generalized Thermoelasticity

A general model of the equations of generalized thermoelasticity   for an infinite space weakened by a finite linear opening Mode-I crack is solving. The material is   homogeneous and has isotropic properties of elastic half space. The crack is subjected to prescribed temperature and stress distribution. The formulation is applied to generalized thermoelasticity theories, the Lord-Şhulman...

متن کامل

Free vibration and wave propagation of thick plates using the generalized nonlocal strain gradient theory

In this paper, a size-dependent first-order shear deformation plate model is formulated in the framework of the higher-order generalized nonlocal strain-gradient (GNSG) theory. This modelemploys ...

متن کامل

Polygonal valuations

We develop a valuation theory for generalized polygons similar to the existing theory for dense near polygons. This valuation theory has applications for the study and classification of generalized polygons that have full subpolygons as subgeometries.

متن کامل

Thermoelastic Response of a Rotating Hollow Cylinder Based on Generalized Model with Higher Order Derivatives and Phase-Lags

Generalized thermoelastic models have been developed with the aim of eliminating the contradiction in the infinite velocity of heat propagation inherent in the classical dynamical coupled thermoelasticity theory. In these generalized models, the basic equations include thermal relaxation times and they are of hyperbolic type. Furthermore, Tzou established the dual-phase-lag heat conduction theo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001